

Universidad de Guadalajara

Centro Universitario de Ciencias Exactas e Ingenierías División de Ciencias Básicas

LICENCIATURA EN MATEMÁTICAS

1. INFORMACIÓN DEL CURSO:

Nombre: Taller de fundamentos de álgebra		Número de créditos: 2 (dos)		
Departamento: Matemáticas		Horas teoría: 0 (cero)	Horas práctica: 32 (treinta y dos)	Total de horas por cada semestre: 32 (treinta y dos)
Tipo: Taller	Prerrequisitos Correquisito c	: on fundamentos de álgebra	Nivel: Seleccionar área de formación básica común, particular, optativa conforme al dictamen. Se recomienda en el 1º semestre.	

2. DESCRIPCIÓN

Objetivo General:

Desarrollar habilidad operativa en los fundamentos del álgebra necesarios para el estudio de las disciplinas fundamentales de la matemática (estructuras algebraicas, geometría, topología y análisis), así como para la solución de problemas en ciencia e ingeniería por medio de herramientas matemáticas.

Contenido temático sintético (que se abordará en el desarrollo del programa y su estructura conceptual)

Problemas y ejercicios de: Operaciones binarias, Funciones exponencial y logarítmica, Factorización y productos notables, Fracciones parciales, Ecuaciones algebraicas, Sistemas de ecuaciones lineales, Álgebra de matrices.

Modalidades de enseñanza aprendizaje

- Exposición didáctica por parte del docente
- Exposición por parte de los estudiantes de problemas, ejercicios, temas e investigaciones en el salón de clase.
- Resolución por parte de los estudiantes de ejercicios, problemas, demostraciones, de manera individual o colectiva en el salón de clases.
- Realización de exámenes sin previo aviso, pero que, solamente tengan el carácter de examen diagnostico.
- Utilización de software matemático como: Maxima, GeoGebra, Octave, Winplot, LateX.
- Lectura de bibliografía en inglés.

Modalidad de evaluación

Instrumento Criterios de calidad		Ponderación
Trabajo personal	Autenticidad en su desarrollo, uso correcto del lenguaje matemático y enmienda de errores.	80%
Participación en clase	Participación activa e interés de las intervenciones.	20%

Competencia a desarrollar

- 1. Construir, desarrollar y expresar argumentaciones matemáticas para interactuar con sus pares.
- Entender y reproducir la matemática identificando áreas del conocimiento, para desarrollar investigación bajo la orientación de expertos.
- 3. Proponer y validar modelos matemáticos de situaciones teóricas y prácticas congruentes con la realidad observada.
- 4. Formular, y resolver problemas de la ciencia y la tecnología en términos del lenguaje matemático actual.
- 5. Difundir el conocimiento matemático con otros profesionales participando en el trabajo interdisciplinario de ciencia y tecnología en la búsqueda de soluciones a problemas sociales.
- 6. Usar el pensamiento cuantitativo y razonamiento analítico para identificar y analizar cantidades y magnitudes, sus formas y relaciones, a través de herramientas matemáticas modernas.
- 7. Usar herramientas de cómputo científico, entendiendo los algoritmos utilizados y las particularidades de los resultados obtenidos.
- 8. Construir un discurso comunicable de las ideas propias de acuerdo con el contexto en que se deba expresar (incluir idiomas extranjeros).

- 9. Auto gestionar el aprendizaje para el cumplimiento de las metas propias, identificando los recursos necesarios y logrando la disciplina requerida.
- 10. Crear y defender una postura propia ante los distintos fenómenos con base en el pensamiento crítico (la abstracción, el análisis y la síntesis) y privilegiando la investigación como método.
- 11. Plantear problemas de la realidad en términos del conocimiento científico disponible para su solución.

Campo de aplicación profesional

Al ser una materia de fundamentos, esta se aplica a los tres ámbitos profesionales definidos: Disciplinas fundamentales de la matemática, modelación y solución de problemas y uso de herramientas matemáticas y computacionales.

3. BIBLIOGRAFÍA.

Título	Autor	Editorial, fecha	Año de la edición más reciente
Algebra Lineal	Stanley I. Grossman	McGraw Hill, 1996	
Precalculo	R. Larson, R. Hostetler	Reverté, 2008	

Formato basado en el Artículo 21 del Reglamento General de planes de estudios de la U.de G.