

Universidad de Guadalajara Centro Universitario de los Lagos

PROGRAMA DE ESTUDIO FORMATO BASE 2012A

1. IDENTIFICACIÓN DEL CURSO

Nombre de la materia

Teoría de Control Avanzado

10171	48	16	64	7
Clave de la materia:	Horas de teoría:	Horas de práctica:	Total de Horas:	Valor en créditos

i ipo de	Cuis	O: (Marque con	una	^)			
C= curso	X	P= practica	X	CT = curso-taller	M= módulo	C= clínica	S= seminario

Nivel en que ubica: (Marque con una X)		
L=Licenciatura	X	P=Posgrado

Prerrequisitos formales (Materias previas establecidas en el Plan de Estudios)	Prerrequisitos recomendados (Materias sugeridas en la ruta académica aprobada)
	Algebra Lineal, Ecuaciones Diferenciales, Variable Compleja, Teoría de Control

Departamento:

Ciencias Exactas y Tecnología

Carrera:

LIEC y MEC

Área de formación:

Area de formación básica común obligatoria.	Área de formación básica particular obligatoria.	Área de formación básica particular selectiva.	Área de formación especializante selectiva.	X	Área de formación optativa abierta.
---	--	--	---	---	-------------------------------------

Historial de revisiones:

Acción: Revisión, Elaboración	Fecha:	Responsable
Elaboración	7 de julio de 2009	Dr. Didier López Mancilla Dr. Francisco J. Casillas Rodríguez
Revisión	16 de julio de 2009	Dr. Jesús Muñoz Maciel Dr. Francisco Gerardo Peña Lecona
Revisión	17 de enero de 2011	Dr. Didier López Mancilla Dr. Francisco J. Casillas Rodríguez
Revisión	21 de julio de 2011	Dr. Didier López Mancilla

	Dr. Francisco J. Casillas Rodríguez
Revisión	Dr. Didier López Mancilla
	Dr. Francisco J. Casillas Rodríguez

Academia:

Electrónica

Aval de la Academia:

Nombre	Cargo	Firma
Dr. Miguel Mora González	Presidente	My I dr. 6
Dr. Francisco Javier Casillas Rodríguez	Secretario	

2. PRESENTACIÓN

El control automático se manifiesta en la mayoría de los sistemas físicos existentes, desde el mismo ser humano hasta las máquinas automáticas, incluyendo los robots. Debido a esto, la teoría de control es una materia de gran interés, principalmente para estudiantes de ingeniería electrónica o mecatrónica sin dejar de serlo para otras áreas de la ingeniería. El curso describe el modelado matemático de sistemas físicos en ecuaciones de estados y proporciona herramientas matemáticas y computacionales para el análisis de los mismos. Introduce los controladores clásicos PID y complementa aspectos avanzados de control, considerando herramientas de diseño de controladores basados en observadores de estados y análisis de estabilidad.

3. OBJETIVO GENERAL

El alumno se familiarizará con los conceptos avanzados de la teoría de control de sistemas lineales e invariantes en el tiempo. Comprenderá los mecanismos de modelado de sistemas físicos en ecuaciones de estados y de diseño de sistemas de control para su aplicación en distintas disciplinas y en la solución de problemas diversos.

4. OBJETIVOS ESPECÍFICOS

- 1. El alumno se familiarizará con los conceptos básicos de un sistema de control en ecuaciones de estados.
- 2. El alumno se familiarizará con las acciones básicas de control, incluyendo los controladores PID y aprenderá a diseñarlos.
- 3. El alumno aprenderá las herramientas de diseño de un sistema de control, utilizando la asignación de polos y observadores de estados.
- 4. El alumno aprenderá las herramientas de diseño de un sistema de control utilizando la teoría de estabilidad de Lyapunov.

5. CONTENIDO

Temas y Subtemas

1. Modelado en el tiempo de sistemas de control

- 1.1. Concepto de espacio de estados y definiciones elementales
- 1.2. Modelado en el espacio de estados
- 1.3. Representación de sistemas dinámicos con ecuaciones de estados
- 1.4. Modelado de sistemas mecánicos
- 1.5. Modelado de sistemas eléctricos
- 1.6. Matriz de transformación
- 1.7. Controlabilidad y Observabilidad
- 1.8. Comparación entre control clásico y control moderno

2. Acciones básicas de control

- 2.1. Control on-off
- 2.2. Control proporcional
- 2.3. Control derivativo
- 2.4. Control proporcional-derivativo
- 2.5. Control integral
- 2.6. Control proporcional-integral
- 2.7. Reglas de Ziegler-Nichols para la sintonía de controladores PID
- 2.8. Diseño de controladores PID mediante el método de respuesta en frecuencia
- 2.9. Diseño de controladores PID mediante el método de optimización computacional

3. Diseño de sistemas de control en el espacio de estados

- 3.1. Diseño por medio de asignación de polos
- 3.2. Diseño de observadores de estados
- 3.3. Diseño de sistemas reguladores con observadores
- 3.4. Diseño de sistemas de control con observadores

4. Diseño de sistemas de control usando estabilidad de Lyapunov

- 4.1. Estabilidad en el sentido de Lyapunov
- 4.2. Funciones definidas, forma cuadrática y el criterio de Sylvester
- 4.3. Análisis de estabilidad de Lyapunov para sistemas invariantes en el tiempo
- 4.4. Diseño de controladores basados en la teoría de estabilidad de Lyapunov

7. TAREAS Y ACCIONES

- a) Presentación por el profesor del nombre de la materia, programa académico y objetivos.
- b) Establecer las actividades a desarrollar durante el semestre, la modalidad de acreditación y evaluación del curso.
- c) Presentación de temas por el profesor con la participación de los alumnos.
- d) Participación voluntaria del alumno de forma individual o colectiva, donde realice presentaciones, análisis, discusión y prácticas de los temas.
- e) Resolución de ejercicios y problemas que se propondrán durante el curso.
- f) Realización de exámenes parciales.
- g) Investigación bibliográfica, de acuerdo al tema.

8. BIBLIOGRAFÍA BÁSICA

Ogata, Katsuhiko, "Ingeniería de Control Moderna", 5a. Edición, Pearson, 2010.

	Farid Golnaraghi, Benjamin C. Kuo, "Automatic Control Systems", 9th Edition, Wiley, 2009, ISBN: 0470048964, 9780470048962.
	William Bolton. "Mecatrónica: sistemas de control electrónico en la ingeniería mecánica y eléctrica", 3ª Edición, Alfaomega 2010
4	Ricardo Hernández Gaviño, "Introducción a los sistemas de control", 1ra. Ed. Pearson, 2010.

9. BIBLIOGRAFÍA COMPLEMENTARIA

	DIBLIOGRAFIA COMPLEMENTARIA
1	Nise Norman S. "Sistemas de Control para Ingeniería" 3ª. Edición, CECSA. 2005.
2	Eronini Umez, "Dinámica de Sistemas y Control", Thomson Learning, 2001, 1ª Edición. Dorsey, John Sistemas do Control
3	Dorsey John, Sistemas de Control continuos y discretos, "Diseño, Implementación", 1ª Edición, 2002.
4	Franklin, Gene F., "Feedback Control of Dynamics Systems", 4a edición, 2002, Prentice Hall.
5	Editorial Limited CV de CV acco
6	Ogata, Katsuhiko, "Ingeniería de control utilizando Matlab", 1ra. Ed. Prentice Hall, 1999.
	1000.