

Universidad de Guadalajara

Centro Universitario de Ciencias Exactas e Ingenierías División de Ciencias Básicas LICENCIATURA EN MATEMÁTICAS

1. INFORMACIÓN DEL CURSO

Nombre: Teoría de ecuaciones diferenciales ordinarias II		Número de créditos: 7 (siete)		
Departamento: Matemáticas		Horas teoría: 51 (cincuenta y	Horas práctica:	Total de horas por cada semestre:
		uno)	0 (cero)	51 (cincuenta y uno)
Tipo: Curso	Prerrequisitos: Teor	oría de ecuaciones diferenciales Nivel: Básica Común		nún
ordinarias I. Taller de teoría de ecuaciones diferenciales ordinarias I. Simultaneo a Taller de ecuaciones diferenciales ordinarias II		Se recomienda cursar en el quinto semestre		

2. DESCRIPCIÓN

Objetivos Generales:

- a) preparación fundamental en el área de las ecuaciones diferenciales ordinarias;
- b) dominio de los métodos de solución de los principales tipos de ecuaciones diferenciales ordinarias y sistemas de éstas;
- c) dominio de las modernas técnicas matemáticas para su uso en las aplicaciones.

Contenido temático sintético

Plano fásico (12 horas)

- 1.1. Clasificación de los puntos singulares en el plano (puntos de equilibrio) para un sistema lineal con coeficientes constantes reales: el nodo, el de silla, el foco, el centro
- 1.2. Separatrices
- 1.3. Plano de fase para sistemas autónomos no lineales. Relación con puntos de equilibrio del sistema linearizado
- 1.4. Sistema mecánico con un grado de libertad: puntos de equilibrio como puntos extremos de la energía potencial, pozos potenciales
- 1.5. Ciclo límite: mapeos de Poincaré, estabilidad del ciclo límite, teorema de Bendixson.

2. Transformada de Laplace (12 horas)

- 2.1. La definición, las condiciones de existencia, las funciones de orden exponencial
- 2.2. Deducción de transformadas de funciones principales
- 2.3. Teoremas de translación
- 2.4. Derivada de transformada, recurrencia entre las derivadas
- 2.5. Concepto de convolución de dos funciones. Teorema sobre convolución de originales
- 2.6. Transformada inversa
- 2.7. Teorema sobre transformada de funciones periódicas
- 2.8. Aplicaciones para la resolución de EDO y sistemas de EDO

3. Solución de EDO en la forma de series (14 horas)

- 3.1. Concepto de serie de potencias, su convergencia, serie de Taylor
- 3.2. Teoremas sobre convergencia y diferenciabilidad de una serie. Radio de convergencia
- 3.3. Soluciones en serie en un entorno de puntos ordinarios
- 3.4. Clasificación de los puntos singulares.
- 3.5. Método de Frobenius.
- 3.6. Funciones especiales como solución de la EDO de Bessel, de Legendre, etc.
- 3.7. Ecuaciones de tipo Fuchs. Ecuación de Gauss. Símbolo de Riemann. Función hipergeométrica

4. Problemas de contorno (13 horas)

- 4.1. Tres géneros de condiciones, reducción a las condiciones homogéneas.
- 4.2. Fórmulas de Green, identidad de Lagrange. Concepto de un operador autoadjunto
- 4.3. Unicidad de solución de un problema no homogéneo
- 4.4. Función de Green: definición, propiedades principales, sentido físico
- 4.5. Problema regular de Sturm-Liouville. Concepto de espectro, funciones propias
- 4.6. Teorema de Steklov sobre el desarrollo a una serie en términos de funciones propias. Sistema ortonormal de funciones
- 4.7. Series de Fourier y de Fourier-Bessel como ejemplos de desarrollo a una serie en términos de funciones propias

Modalidades de enseñanza-aprendizaje

- Exposición didáctica por parte del docente.
- Búsqueda bibliográfica de demostraciones de teoremas propuestos para los alumnos y exposición por parte de los estudiantes en el salón de clase.
- Discusión de demostraciones presentadas por parte de profesor y alumnos.
- Utilización de software matemático en presentación de modelos en la clase.

Modalidad de evaluación

Instrumento	Criterios de calidad	Ponderación	
Demostración de teorema	El uso correcto del lenguaje matemático al presentar la demostración, explicación de	15%	
por parte de alumno	principales relaciones entre los conceptos, respuestas a las preguntas adicionales.	13%	
Participación en clase	Puntualidad de asistencia. Participación activa e interés de las intervenciones.	25%	
Examen Parcial I (oral)	Autenticidad en las respuestas, rigor en la teoría y uso correcto del lenguaje matemático.	30%	
Examen Parcial II (oral)	Autenticidad en las respuestas, rigor en la teoría y uso correcto del lenguaje matemático.	30%	

Competencia a desarrollar

- 1. Proponer y validar modelos matemáticos de situaciones teóricas y prácticas congruentes con la realidad observada.
- 2. Formular, y resolver problemas de la ciencia y la tecnología en términos del lenguaje matemático actual.
- 3. Difundir el conocimiento matemático con otros profesionales participando en el trabajo interdisciplinario de ciencia y tecnología en la búsqueda de soluciones a problemas sociales.
- 4. Construir un discurso comunicable de las ideas propias de acuerdo con el contexto en que se deba expresar (incluir idiomas extranjeros).
- 5. Auto gestionar el aprendizaje para el cumplimiento de las metas propias, identificando los recursos necesarios y logrando la disciplina requerida.
- 6. Crear y defender una postura propia ante los distintos fenómenos con base en el pensamiento crítico (la abstracción, el análisis y la síntesis) y privilegiando la investigación como método.

Genéricos: detectar las formas, leyes e instrumentos del área especifica; interpretar correctamente el problema establecido, saber formular el resultado y estrictamente demostrar las afirmaciones; saber el establecimiento correcto de los problemas clásicos; dominar los métodos de modelación matemática y algorítmica en el análisis y la solución de los problemas del carácter como teórico tanto práctico; ser capaz representar exactamente el conocimiento matemático en la forma oral.

Genéricos específicos de la materia: conocer los conceptos básicos de la teoría de las ecuaciones diferenciales ordinarias, definiciones y propiedades de los objetos matemáticos de esta área, las formulaciones de las afirmaciones; saber resolver los problemas de carácter teórico y práctico en el área de las ecuaciones diferenciales ordinarias; dominar los instrumentos y técnicas de las EDOs, métodos de solución de problemas de aplicación y demostración en esta área.

Campo de aplicación profesional

Las competencias obtenidas en la materia de Teoría de EDO II son requeridas en el estudio de las siguientes materias: ecuaciones diferenciales parciales, sistemas de ecuaciones diferenciales, geometría diferencial y topología entre otras.

3. BIBLIOGRAFÍA

Título	Autor	Editorial	Año de la edición más reciente
Titulo	Autor	Editorial	i Alio de la edicion mas reciente

Ecuaciones Diferenciales	C. Henry Edwards, David E. Penney	Prentice-Hall	2009
Ecuaciones Diferenciales y Problemas con	Boyce, W., Richard C. DiPrima	Limusa-Wiley	2010
valores en la frontera			
Ecuaciones Diferenciales Ordinarias	Arnold, V.I.	Rubinos 1860	2004
Ecuaciones Diferenciales	S.L.Ross	Reverté	2002
Problemas de ecuaciones diferenciales	Filíppov, A.F.	URSS	2005
Ecuaciones diferenciales ordinarias	Pontryagin, L.S.	Aguilar	1973

Formato basado en el Artículo 21 del Reglamento General de planes de estudios de la U.de G.